Topic 3 -Fundamental Theorem of Arithmetic

Previously in Math 4460:
a,b,p
$$\in \mathbb{Z}$$
, p prime
If plab, then pla or plb
Theorem: Suppose that p is prime
and $a_{1,3}a_{2},...,a_{n} \in \mathbb{Z}$ with $n \geq 2$.
and $a_{1,3}a_{2},...,a_{n} \in \mathbb{Z}$ with $n \geq 2$.
If $p \mid a_{1}a_{2}...a_{n}$,
then $p \mid a_{i}$ for some i with
 $l \leq i \leq n$
proof: Let p be a prime. [proof
 $proof$ for the statement:
Let $S(n)$ be the statement:
"If $p \mid a_{1}a_{2}...a_{n}$ where
 $a_{1,3}a_{2,...,a_{n}} \in \mathbb{Z}$, then $p \mid a_{i}$.
"If $p \mid a_{1}a_{2}...a_{n}$ where
 $a_{1,3}a_{2,...,a_{n}} \in \mathbb{Z}$, then $p \mid a_{i}$.
We will induct on $S(n)$ where $n \geq 2$.

l

Thus, S(k+1) is true. So, by induction, S(n) is true for all nzz.

Theorem: (Fundamental Theorem of Arithmetic) Let nEZ with n 22. Then n factors into a product of one or more primes. Moreover, the factorization is unique apart from the ordering the prime factors. of

EX: n=300 $300 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5$ Same except = 3.5.2.5.2 A for the ordening of the prime factors

proof: Let NEZ, NZZ. 5 We proved in a previous class that n factors into a product of one or more primes. We now prove the uniqueness of such a factoring. Suppose n factors into two different prime factorizations. By dividing off the common factors this would give us This would give v_{1} $n = P_1 P_2 \cdots P_k = q_1 q_2 \cdots q_m (k)$ Where Pi, Pz, ..., Pk, 91, 92,..., 9m are all primes and $P_i \neq q_j$ for all i, j. Explanation of above: $\mathsf{N} = \mathsf{S} \cdot \mathsf{S} \cdot \mathsf{t} \cdot \mathsf{u} \cdot \mathsf{u} \cdot \mathsf{w} = \mathsf{S} \cdot \mathsf{u} \cdot \mathsf{y} \cdot \mathsf{y} \cdot \mathsf{z}$ Suppose where s, t, u, w, s, y, z are primer. Then cancel common factors and get $S \cdot t \cdot u \cdot w = y \cdot y \cdot z$ $P_1 P_2 P_3 P_4 = q_1 q_2 q_3$

Equation (*) tells us that [6
P, [9, 9, 2...9m].
The previous theorem tells us that
Pi | 9; for some
$$1 \le j \le M$$
.
We had a theorem that tells
Us that since P, and 9; are
prime and Pi | 9; we
must have Pi = 9; [1/25 pg. 7]
This contradicts the previous page
Where we said Pi = 9;
for all ij.
Merefore, when we factor n into
primes, the factorization is
primes, the factorization of
unique up to the ordening of
the prime factors. [2]

heorem: Let a, bell 17 with a, b>1. Suppose that gcd(a,b) = 1and $ab = c^{n}$ where $C, n \in \mathbb{Z}, C \approx I, n \approx I$. Then there exist $d, e \in \mathbb{Z}$, with dzl, ezland $a = d^n$ and $b = e^n$. Proof: Suppose gcd (a,b)=1 and c[°] = ab, If a=1, then set d=1 and e=c. If b=1, then set d=a and e=1. So for the remainder of the proof suppose a72, b72.

Since gcd(a,b)=1, the prime [8] tactors of a and b are distinct. Thus, we have that and $a = P_1 P_2 \cdots P_r$ $b = P_{r+1}^{a_{r+2}} P_{r+2}^{a_{r+2}} \cdots P_{r+s}^{a_{r+s}}$ Where Pi, P2, ..., Pr+s are distinct primes and a, a2,..., ar+s are positive integers with rzl, szl. $E \times :$ $a = 7^{2} \cdot 5^{4} \cdot 2^{10}$ $P_{1}^{a_{1}} \cdot P_{2}^{a_{2}} \cdot P_{3}^{a_{3}}$ Suppose that $C = 9, 9^2 \cdots 9^k$ $b = |3^2 \cdot |1^4$ is the prime decomposition Py Ps of c where q,j,...,qk $|\mathbf{b}_{\mathbf{x}} \gg |$ are distinct primes and

And thus $a_j = nb_j$ for $l \leq j \leq r + s$. 0 So, $a = P_1 P_2 \cdots P_r^{a_r} = P_1 P_2 \cdots P_r^{nb_1} P_2^{b_2} \cdots P_r^{nb_r}$ $= \left(P_1 P_2 \cdots P_r^{b_r} \right)^r$ $d \qquad nb_{r+1} \qquad nb_{r+2} \qquad nb_{r+s} \\ b = P_{r+1} P_{r+1} \qquad \cdots \qquad P_{r+s} \\ = \left(\begin{array}{c} P_{r+1} & p_{r+2} & \cdots & p_{r+s} \end{array} \right)^n \\ = \left(\begin{array}{c} P_{r+2} & p_{r+2} & \cdots & p_{r+s} \end{array} \right)^n \\ \end{array}$ and $d = P_1 P_2 \dots P_r$ Set and $e = P_{r+1}^{b_{r+1}} \cdots P_{r+s}^{b_{r+s}}$

HW 3

 $D(a) \text{ Given } a, b \in \mathbb{Z} \text{ with } b \neq 0,$ there exist $x, y \in \mathbb{Z} \text{ with } y \neq 0$ and gcd(x, y) = 1 and $B = \frac{x}{y}$. (|

$$\frac{Ex}{b} = \frac{25}{10} = \frac{5}{2} = \frac{x}{9}$$

$$g(d(x,y)) = g(d(5,2)) = 1$$

Proof: Let d = gcd(a,b). Then, $x = \frac{a}{d}$ and $y = \frac{b}{d}$. Then, $x = \frac{a}{d}$ and $y = \frac{b}{d}$. We know that $x, y \in \mathbb{Z}$ because d|a and d|b. d|a and d|b. From class, $gcd(x,y) = gcd(\frac{a}{d}, \frac{b}{d}) = 1$. And, $\frac{a}{b} = \frac{a/d}{b/d} = \frac{x}{y}$.

(1) (d) Let p be prime.
Prove that
$$\sqrt{P}$$
 is irrational.
Proof: We will prove this by
contradiction.
Suppose \sqrt{P} is a rational number.
By part (a), we can write
 $\sqrt{P} = \frac{x}{y}$ where $x, y \in \mathbb{Z}$
and $y \neq 0$ and $gcd(x,y) = 1$.
Squaring both sides gives
 $p = \frac{x^2}{y^2}$.
Or, $Py^2 = x^2$ (K)

(*) tells us that p/x2. [13 Because p is prime and plxx We Know Plx Thus, X = pl where $l \in \mathbb{Z}$. Plug X=pl into (*) to get $py^{2} = (pl)^{2} = p^{2}l^{2} \forall \forall \forall \\ \forall y^{2} = (pl)^{2} = p^{2}l^{2} \forall \forall \forall \\ \forall y^{2} = p^{2}l^{2} \forall y^{2} = p^{2}l^{2} \forall y^{2} = p^{2}l^{2}$ So, ply?. Since p is prime and ply.y We Know ply. Since Plx and Ply, Pis a common and y.

But then $gcd(x,y) \ge P$. This contradicts gcd(x,y)=1. Thus, JP is irrational.